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Abstract

This paper presents an analysis and numerical solutions of the minimum-energy
control of two-link robot manipulator. The minimum-energy control point-to-point
trajectory is investigated subject to control constraints and state constraints on the
angular velocities. The numerical solutions are solved by transforming the original
problem into a nonlinear programming problem. The mathematical analysis of the
optimal control problems is done based on the numerical results using an indirect
method. The necessary conditions can be stated as a multi-point boundary value
problems.
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1. Introduction

Robot manipulators are used for variety tasks in industry. The important performances
of the robot manipulators are the speed and energy when its work. Therefore minimum
energy point-to-point trajectory of two-link robot manipulators are investigated subject to
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control and state constraints. The point-to-point control of multiple link manipulators can
be applied to accurate aiming of an industrial robot or a multi-body spacecratft.

The methods for solving optimal control can be classified generally into two main
categories: direct and indirect methods. The direct method solve the optimal control
problem by discretizing the control and/or the state variables, transforming the optimal
control problem into a Nonlinear Programming Problem, NLP, see eg Betts [1], Von Stryk
and Bulirsch [2], Seywald and Kumar [3], while the indirect methods are based on the
solving of the necessary conditions derived from the Pontryagin Maximum Principles
(Pontryagin et al. [4]).

2. Optimal Control Problem

The general optimal control problem is to find an admissible contrtd optimise the
performance index in the following general form (Bryson and Ho [5]):

Ju] = olx(ty, ts)] +/ ' L(x,u,t)dt Q)

to

subject to the dynamic equations, terminal conditions and boundary conditions

x = f(x,u,t)
Ylx(ty),ty] = 0
iL‘(to) = 0

Herez(t) € R", u(t) € R', and¥ € R*. Assume that the functiong, L, and
f, respectively, are continuously differentiable with respect to all their arguments. The
Hamiltonian function is defined with Lagrange multipliex&) € R™ as

H=A"f4+L 2)
The minimum principle requires that the conttominimise H:

u* = argmin H(x*, X\, u, t) 3
ue

where( is the set of admissible piecewise continuous control valuesc&dnd*, andu*
are the extremal of the state, costate, and control variables. The state, costate variables



Subchan 3

and the Hamiltonian satisfy the following conditions:

I = H, (4a)

AT = —H, (4b)
T _ [9¢  pOV

X =[5 5ll, (4c)
_ [ a0

Hity) = _{8t+y at:Ht:tf (4d)

H, = 0 (4e)

wherew is a constant multiplier vector of the dimension of the constr&in€Control and

state inequality constraints are augmented to the Hamiltonian, and additional necessary
conditions are obtained as a result. These necessary conditions depending on the type of
the state constraint.

3. Problem Formulation

We consider two-link manipulator as developed by Wie, Chuang and Sunkel [6]. The
dynamic behaviour of the system is described by the following state equations,

(E.1 = X2

. Iuy — (aly + Iy cos w3)ug + Iy (x2 + 24)% sinws + 303 sin 3 cos 3
€T =

2 1213 7]2 cos? I3
33'3 = X4
Ty = [—(IQ + Iy COSLCg)(’U,l +I4([L‘2 +1‘4)2 Sinl‘3) + (Oé]g+[3+

(14 )l cos x3)uy — I4(I3 + Iy cos x3)x3 sin x3] /[Io I3 — I3 cos® x3)

wherea is a system parameter used to denote the type of torque applied to the second
link, o = 1 for a joint torque andv = 0 for a direct torque/; is the mass moment of
inertia of the first link with respect to the shoulder axis scaledRy.., I» is the mass
moment of inertia of the second link with respect to the elbow axis scaldd, py:

IB = Il + m2L%/Tmax

I, = m2""L%/Tmaw

The minimum energy problem is investigated as the performance index

t 2
min J (u) = /o ' Zl(ui)th 5)

subject to initial conditiong:y and final conditionse,, .
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The final timet; has to be prescribed in order to obtain useful solution. The control
u,; are bounded as follows:
()] <1, i=1,2 (6)

The state variables are constrained by

|{I?Z(t)| S.’Eimaz, Z:1,,4 (7)

3.1. Unconstrained problem

The problem is transformed into Mayer problem by introducing variablavhere

2

i5 = (ui)?, 25(0) =0, minJ(u)=ws(ts) ®)

=1
Thus the Hamiltonian for the unconstrained problem can be defined by
3
HI™¢ = Xg @) + gy T + Aay @3 + Aoy @a + Aay D (u5)? )
i=1

The costate equations, defined k¥ = —H,,
Aoy = 0 (10)

Aup (21214 (29 + 24) sin x3 + 2125 sin 23 cos x3)
I I3 — I3 cos? x5

/.\wz = _)\-'El -

Awy (—20429 sin g (I5 + Iy cos z3)

I I3 — I cos? x3
2I4(xo + x4) (I + Iy cosxg) sinxg)
B I I3 — I2 cos? x3
1
Iz — IFeos?a;

(11)

3
{)\m2(—I4 sinzzug + IoIy(zg + x4)% cos x3 + I223(cos? x3 — sin® 3))
Az, (Iysinzguy — (1 4+ )y sinzgug — I4(I5 + Iy cos r3)T3 cos T3
7[4([2 + I4 COS Ig)(l’g -+ 1’4)2 COSTs3 — IE SiIl2 l‘g(I% + (I’Q + 1’4)2)}
1 ) . . .

_ (L~ Peo 1) {214 cos x3 sin wg( Az, T2 + )\x4x4)} (12)

)~\ . _)\22 (2[2[4(%2 + $4) sinx3) 1\

T I I3 — I? cos? w3 s
_)\m4(214(12 +I4COS£E3)(SC2 +ZC4) Sil’lltg) (13)
Iy I3 — I cos? a3
Ao = 0 (14)
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The controls can be derived explicitly frof,, = 0 as follows:

12()\4 — )\2) + Iy A4 cosxs
2)\5(]2[3 — IZ cos? Ig)
IQQ()\Q — )\4) - I3I4 + I4(>\2 - (1 + OZ)>\4) COS T3

= 16
12 2X5(Ix13 — I3 cos? x3) (16)

The transversality condition (eq. [4c]) gives

oT

As(tr) = =1 17
The control; are constrained as follows:

The final timet is fixed on 0.8 sec. Figure 1 shows thatis directly on the minimum
value. Then follows by unconstrained case (see Eq. [15]). Finallg saturated on the
maximum value. While:, is unconstrained along the optimal trajectory.

State Control

non-dimensional
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time0 (éec)

Figure 1: The computatinal results of the unconstrained case

3.2. Constrained problem

The state constraints can be written as
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Consider the following equations:

0 s =o, isf);éo, i=1,3 (20)
aui aul
and 5
sM 20, i=24 (21)
811,7;
where
s P4 k=12 (22)
i R 1=1,..., =12,...

From eq. [20] and [21] we obtain that the state constraintandxs are second order
state constraints and the state constraintandz, are first order state constraints. The
Hamiltonian for constrained problem becomes

Fcons — Hfree +m S§2) + ,'72551) + 773S§2) + 7’]4S£I) (23)

The costate equations can be derived as in the unconstrained case by considering whether
the constraints active or not.

4. Numerical Example

This section presents an example for the constrained minimum-energy problem. The ini-
tial conditions arer, = [0, 0, 0, 0] and the final conditions are;, = [-0.15,0,0.25,0].
The timet; is fixed on0.8 sec andx = 1. The state constraints afe;(¢)| < 0.4, =
1,...,4. The computational results are based on the direct collocation (DIRCOL) by Von
Stryk [7].

Figure 2 shows that the state constraiptis active while the other state constraints
are not active. When the state constrainis active the Hamiltonian can be defined by

Feons — Hfree + 77454(11) (24)

The controlu; is saturated directly on the minimum value at the beginning . Then fol-
lows by unconstrained case. Finally the contiplis saturated on the maximum value.
Furthermore the contral; is not constrained along the optimal trajectory.

5. Conclusions

The optimal trajectory of the minimum-energy of two-link manipulator is presented. The
computational results are based on the direct methods. The advantage of the direct meth-
ods is that the user does not have to analyse further into the problem by deriving costate
variables, jump conditions or switching structures.
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State Control
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Figure 2: The computational results of the constrained case

The main drawback of the direct methods is that they produce several minima so-
lutions and the solutions are less accurate than the indirect methods. To overcome these
problems it is necessary to use the direct method solutions as a starting analysis and initial
guesses for the indirect methods.

The main advantage of the indirect methods is that they produce very accurate result.
The major difficulties of the indirect methods are that the user must derive the costate
variables, jump conditions and switching structures. It is very difficult to define where
the jump conditions and switching structures should occur without knowing the direct
methods solutions as a priori estimate.
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